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Abstract. This paper looks at the possibility of a system of free particles presenting decoherence
in the total momentum when tracing upon their relative momenta if we take into account a relativistic
correction to the expression of the kinetic energy.

1. Introduction

Decoherence—the phenomenon whereby a quantum system initially in a pure state evolves into
a improper mixture due to interaction with its environment [1]—has been studied extensively,
using both toy models [2] and more complex models representing real physical situations [3].
Sources of decoherence such as scattering [4, 5] and quantum gravity [6, 7] and both internal
[8, 9] and external [10, 11] environments are taken into consideration. Omnes [12] recently
presented a general theory of the effect of decoherence that includes both the harmonic model
of Caldeira–Leggett [10] and the external environment considered by Joos and Zeh [11] and
is related to the quantum state [13] diffusion model.

Decoherence is especially interesting as it promises to solve the old problem of how to
derive the classical behaviour of macroscopic bodies from quantum principles. In fact, in the
case of a macroscopic body, decoherence is believed to suppress the off-diagonal elements of
the spatially reduced matrix of the centre of mass (cm), irrespective of initial conditions. This
is equivalent to establishing a superselection rule for the position of macroscopic bodies and
to saying that we cannot experience spatial macrosuperpositions. We can thus explain why we
do not encounter states of this kind when looking at everyday objects. To derive such a result it
is not necessary to consider an external environment. In fact, a system of many particles like a
macroscopic body may be considered as consisting formally of a ‘collective system’ described
by the collective coordinates, and the system described by its microscopic coordinates, which
can act as an (internal) environment if the two formal systems are coupled. This coupling may
be either guaranteed by some constraints or caused by an external potential. Of course in the
case of an isolated macroscopic body, where the Hamiltonian consists of the sum of two separate
Hamiltonians relative to the cm and internal variables respectively, there is no coupling between
them and so decoherence of the collective variable is not possible. However, we wish to signal
a possible case of decoherence, with the suppression of correlations in the total momentum,
for a system of particles even if isolated, provided that we consider relativistic corrections to
the non-relativistic Hamiltonian. It should be pointed out that decoherence of isolated systems
has been discussed before in various contexts: Halliwell [8] investigated the variables that
will generally become effectively classical as the local densities (of the number of particles,
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momentum and energy), and Calzetta and Hu [14] investigated the decoherence of histories
of certain correlation functions in a field theory. We should also mention that diagonalization
in the square of momentum basis has been argued for a system of (non-relativistic) particles
interacting with the linearized gravitational field [15].

It is already known that in classical electrodynamics a system of interacting particles
may be approximately described to terms of second order in 1/c by a Hamiltonian depending
only on their positions and velocities, since the radiation appears only as an effect of order
1/c3. The same may be said for particles subject to gravitational interaction [16]. In this
approximation the total momentum of the system is no longer independent, but is coupled to
the internal degrees of freedom. So, if we adopt the above-mentioned Hamiltonian (after due
symmetrization) as the Hamiltonian operator within non-relativistic quantum mechanics, we
may expect to have decoherence for the collective variable tracing over the microscopic ones.
This may occur even if the particles are not interacting, thanks to the relativistic correction
to their kinetic energy. The coupling we are discussing commutes with the non-relativistic
free Hamiltonian of the cm. As we learned from studies of wide-open quantum systems [17],
the diagonalization is to be expected in the basis of any dynamical operator commuting with
the coupling terms and so our candidate for a preferred basis is that of total momentum.
The importance of an interaction commuting with the preferred basis was already stressed by
Zurek [18].

Since the aim of this paper is merely to briefly signal such a possibility, we will consider
for the sake of simplicity a system ofn free spinless particles of equal massm in one dimension,
a one-dimensional ideal gas in fact. We stress that we intend to work within the non-relativistic
quantum mechanics and consider the correction to the kinetic energy and its consequences as
a relativistic effect.

The model is certainly not realistic but we intend to offer the result as a further case of
decoherence with not usual features. Not usual because the system is isolated and also because
in our case the reduced statistical operator diagonalizes on the basis of the total momentum,
which thus acquires the status of preferred basis. We believe all this is interesting in itself.
We do wish to stress that the calculations will be carried out without recourse to any master
equation but by following the Schrödinger evolution of a pure state. With the kinetic operator
used, the Galilean invariance is destroyed, so we have to specify the reference frame we are
referring to. A Galilean transformation corresponds to a translation of momenta. For the
approximation we are using to make any sense, the reference frames to take into consideration
are obviously the ones (if they exist) for which the absolute value of momentum for each
particle is not significantly likely to be of the order of, or greater than,mc. This requisite can
be expressed by applying the condition〈p̂2

i 〉 � m2c2 for everyi. It will certainly be satisfied
if the more restrictive condition

∑n
i=1〈p̂2

i 〉 � m2c2 is also satisfied. To establish a definite
reference frame, we will adopt the one in which, for a given wavefunction, the last mentioned
expression gives the lowest value. It will be the reference frame in which the mean value of the
total momentum is zero. Even by selecting the optimal reference frame, however, the validity
of our approximation is not automatically guaranteed and our result will be only significant if
the condition on the values of〈p̂2

i 〉 is satisfied.
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2. The system of free particles in one dimension with relativistic correction to the
kinetic energy

The free Hamiltonian which we will consider for quasi-relativistic particles is

n∑
i=1

p̂2
i

2m
−

n∑
i=1

p̂4
i

8m3c2
.

Using the momentum basis and withϕ(p1, p2, . . . , pn) indicating the initial state, we have the
state at timet as follows:

|χ(t)〉 = e−it/h̄[
∑n

i=1(
p2
i

2m−
p4
i

8m3c2
)]
ϕ(p1, p2, . . . , pn).

We now change the variables:pi = P/n+ηi , whereP is the total momentum. Theηi are not
independent, since they must satisfy the relation

∑n
i=1 ηi = 0. We will consider as independent

variablesP together with the firstn − 1 relative momenta. The last relative momentum is
expressed asηn = −

∑n−1
i=1 ηi . The Jacobian determinant of the transformation is equal to

1. We will write the integration volume element for the new variables as dV = dP dS,
where dS = dη1 dη2 . . .dηn−1. Using the new variables and taking into account the relation∑n

i=1 ηi = 0 the above expression now becomes:

|χ(t)〉 = e−
it
h̄

[ P
2

2nm− P4

8n3m3c2
+
∑n

i=1(
η2
i

2m−
η4
i

8m3c2
− 3P2

4n2m3c2
η2
i− P

2nm3c2
η3
i )]8(P, η1, . . . , ηn)

where8(P, η1, η2, . . . , ηn) indicatesϕ(P/n+η1, P/n+η2, . . . , P/n+ηn)Note that here and
in the various expressions that followηn stands for= −∑n−1

i=1 ηi . The projection〈P ′|χ(t)〉 of
the state vector at timet on an eigenstate|P ′〉 of the total momentum is

e−
it
h̄

[ P
′2

2nm− P ′4
8n3m3c2

+
∑n

i=1(
η2
i

2m−
η4
i

8m3c2
− 3P ′2

4n2m3c2
η2
i− P ′

2nm3c2
η3
i )] 8(P ′, η1, . . . , ηn).

By tracing〈χ(t)|P ′′〉〈P ′|χ(t)〉 upon the relative momenta, i.e. integrating over dS, we get the
reduced density matrix element on the total momentum basis:

ρ
P ′P ′′ = e

−it
h̄

[ (P
′2−P ′′2)
2nm − (P ′4−P ′′4)

64m3c2
]
IP ′P ′′ .

The factorIP ′P ′′ indicates the integral

IP ′P ′′ =
∫
8(P ′, η1, η2, . . . , ηn)8

∗(P ′′, η1, η2, . . . , ηn)e
it
∑n

i=1(wη
2
i +zη

3
i ) dS

wherew = 3(P ′2 − P ′′2)/(4h̄n2m3c2) andz = (P ′ − P ′′)/(2h̄nm3c2). The diagonal matrix
elements are constant of motion, but whenP ′ 6= P ′′ the integral in the previous expression
may cancel out with time, in which case the off-diagonal elements are cancelled out, meaning
that we have decoherence.

3. Evaluation of the reduced density matrix elements

In order to understand the time behaviour of the matrix elements we are interested in it is thus
necessary to evaluate the integralIP ′P ′′ . To take into account the constraintηn = −

∑n−1
i=1 ηi

we multiply the integrand by the delta functionδ(
∑n

i=1 ηi) using its Fourier representation
(1/2π)

∫
ei
∑n

i=1 kηi dk and also considerηn as a independent integration variable. Writing

G(P ′, P ′′; η1, . . . , ηn) = 8(P ′, η1, η2, . . . , ηn)8
∗(P ′′, η1, η2, . . . , ηn)
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andh(ηi) = wη2
i + zη3

i our integral becomes

IP ′P ′′ = (1/2π)
∫

dk
∫

eikη1+ith(η1) dη1

∫
eikη2+ith(η2) dη2

. . .

∫
eikηn+ith(ηn) dηn G(P

′, P ′′; η1, η2, . . . , ηn).

Let us start with the integration onηn. We are interested in the behaviour of the off-diagonal
matrix elements at large time, so we shall use asymptotic expansion methods to evaluate
the result. More precisely, we will look at the method of stationary phase [19]. According
to this, whent is a large quantity, the major contribution to the value of the integral arises
from the immediate vicinity of the endpoints and from the vicinity of those points at which
h(ηn) is stationary, i.e. the first derivativeh′(ηn) is equal to zero. In the first approximation the
contribution of stationary points is more important. If we suppose that the function representing
the intial state is square integrable and thus going to zero at infinity, we can disregard the
endpoint contributions at all. Since only the neighbourhood matters, asymptotic evaluation
consists of replacingh(ηn) near any stationary pointη∗n ash(η∗n) + ( 1

2)h
′′(η∗n)(ηn − η∗n)2. By

the same argument, the factor of eith(ηn) in the integrand, assuming it is a continuous function,
is replaced by its value atη∗n and the integration is safely extended from−∞ to +∞. We
will replaceG(P ′, P ′′; η1, . . . , ηn) by G(P ′, P ′′; η1, . . . , η

∗
n), but maintain the dependence

on ηn of eikηn , since it belongs to the Fourier representation of the delta function, a non-
continuous and singular function indeed. We have two stationary points atηn = 0 and
ηn = −2w/(3z) = −(P ′ + P ′′)/2. These two values are indicated asα1 andα2, respectively.
The corresponding values of the second derivative areh′′(α1) = 2w andh′′(α2) = −2w.
Using the procedure illustrated above, we obtain:

G(P ′, P ′′; η1, η2, . . . , α1)[2iπ/th′′(α1)]
1/2eith(α1)+ikα1−ik2/(2th′′(α1))

+G(P ′, P ′′; η1, η2, . . . , α2)[2iπ/th′′(α2)]
1/2eith(α2)+ikα2−ik2/(2th′′(α2)).

Integrating now onηn−1 the two terms of the above expression we obtain the sum of four terms,
which are again doubled after the next integration and so on. Lastly, the asymptotic expression
of IP ′P ′′ becomes

1

2π

∫
dk

∑
i1,i2,...,in

G(P ′, P ′′;αi1, αi2, . . . , αin)
n∏
j=1

√
2iπ

th′′(αij )
e

ith(αij )+i[kαij− k2

2th′′(αij )
]
.

In the multiple sum, each ofi1, i2, . . . , in assumes the value 1 or 2, corresponding to the two
values of the stationary points for each relative momentum. Finally, performing the integration
onk, we obtain:

(
2π

t

)(n−1)
2 ′∑

i1,i2,...,in

G(P ′, P ′′;αi1, αi2, . . . , αin)
e

it (
∑n
j=1 αij

)2

2
∑n
j=1 1/h′′(αij )√

i
∑n

j=1 1/h′′(αij )

n∏
j=1

eith(αij )√−ih′′(αij )

where
∑′ means that the terms for which

∑n
j=1 1/h′′(αij ) = 0 are excluded. Such terms

indeed give zero after the integration onk. After substitution of|
√

i
∑n

j=1 1/h′′(αij )| with the

lower possible value
√|1/(2w)|, we have asymptotically

|ρ
P ′P ′′ | 6

∣∣∣∣2πt
∣∣∣∣(n−1)/2

|2w|−(n−1)/2
′∑

i1,i2,...,in

|G(P ′, P ′′;αi1, αi2, . . . , αin)|.
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For the primed sum we may also write:
′∑

i1i2...in

|G(P ′, P ′′;αi1, . . . , αin)| 6 2n
[ ′∑
i1i2...in

|8(P ′, αi1, . . . , αin)||8∗(P ′′, αi1, . . . , αin)|
]
/p

wherep is the number of terms which contribute with the non-zero value to the sum. We used
the definition ofG(P ′, P ′′; η1, η2, . . . , ηn) already given and the fact thatp is equal to or less
than the 2n possible combinations of the indicesij .

At this point we will compare the off-diagonal matrix elements with the diagonal ones.
Since the last are constant of motion, we do not expect it to change the result, but to obtain a
dimensionless expression. To this end we need to establish a further bound. Looking at the
definition of the reduced matrix elements we may state that

|ρ
PP
| = IPP =

∫
8(P, η1, . . . , ηn)8

∗(P, η1, . . . , ηn) dS

is evidently greater than or equal to the result of the integration over a finite volume as the
integrand is a positive quantity. Let−Mc 6 ηi 6 Mc be a finite integration interval for each
variable. Recalling that onlyn− 1 of them are independent, asηn = −

∑n−1
j=1 ηj :

|ρ
PP
| > (2Mc)n−1|8(P, u1, u2 . . .)|2

whereu1, u2 . . . denotes an internal point of the hypercube chosen as the integration domain.
We recall that the function|8(P, u1, u2 . . .)| is assumed as bounded everywhere. Now
comparing the off-diagonal elements to the diagonal ones we will consider (to be democratic)
the ratio of|ρ

P ′P ′′ | to (|ρP ′P ′ ||ρP ′′P ′′ |)1/2. Using the inequalities already found:

|ρ
P ′P ′′ |/|(ρP ′P ′ ||ρP ′′P ′′ |)1/2 6 2A|t/τ |−(n−1)/2.

The constantA denotes the quantity:

[
∑′

i1i2...in
|8(P ′, αi1, . . . , αin)||8(P ′′, αi1, . . . , αin)|]/p
|8(P ′, u′1, u′2 . . .)||8(P ′′, u′′1, u′′2 . . .)|

andτ = 4πh̄m
3|P ′2−P ′′2| is a characteristic timescale of the process such that whent � τ the absolute

values of the off-diagonal elements are vanishing. It should be pointed out that we actually have
decoherence in the basis of (non-relativistic) kinetic energyE = P 2

2M of the cm. Introducing
E as a more appropriate variable the decoherence time is better written asτ = 2πh̄m

3M|E′−E′′| . It
is inversely proportional to the difference|E′ − E′′| and also decreases with increasing total
massM, as one may expect intuitively. With|E′ −E′′| of the order of a few eV and with, say,
ten particles, the characteristic time is very small, about 10−16 s.

As we anticipated and contrary to our initial prediction, the result we have just found
shows that the reduced density matrix diagonalizes on the basis ofP̂ 2 and not on that of total
momentumP̂ . That is, they are the matrix elements for which|P ′| 6= |P ′′|, which we found
go to zero as time increases. But our expression for the asymptotic behaviour is not valid
if P ′ = −P ′′. In such a case, in fact, the functionh(η) depends only onη3, we have only
a stationary point of the second order and the asymptotic evaluation of our integral has to
be worked out separately. To this end, the integration interval inηi is split into (0,∞) and
(−∞, 0) and each of the two integrals is integrated by parts a number of times, differentiating
G(P ′, P ′′; η1, η2, . . . , ηn) and integrating the remaining factor of the integrand. Taking only
the dominant term into account, asymptotically we have:

|ρ
P ′P ′′ |/(|ρP ′P ′ ||ρP ′′P ′′ |)1/2 6 B |t/τ ′|−(n−1)/3

∣∣∣∣ ∫ +∞

−∞
dβ [Ai(β)]

n

∣∣∣∣.
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The constantB is:
|8(P ′, 0, 0, 0, . . . ,0)| |8(P ′′, 0, 0, 0, 0, . . . ,0)|
|8(P ′, u′1, u′2 . . .)||8(P ′′, u′′1, u′′2 . . .)|

andτ ′ = 2π3h̄
3n2|P ′−P ′′|c . For values of|P ′ −P ′′| of a few eV/c and always assumingn ∼ 10, still

τ ′ ∼ 10−16 s. The function Ai(β) indicates the Airy function1
π

∫ +∞
0 cos(βy + y3/3) dy. We

assumed time to be positive andP ′ > P ′′. The asymptotic estimate of the other half of the off-
diagonal matrix elements for whichP ′ < P ′′ is immediately obtained since|ρ

P ′′P ′ | = |ρP ′P ′′ |
by hermiticity. Ai(β) for large and positive values ofβ tends exponentially to zero. It is
also going to zero forβ which tends towards−∞, but now the behaviour is like|β|−1/4.
However, for a sufficient number of particles (five or more) [Ai(β)]n is integrable. Summing
up,|ρ

P ′P ′′ |/(|ρP ′P ′ ||ρP ′′P ′′ |)1/2, if the number of particles is as indicated, also tends asymptotically
to zero whenP ′ = −P ′′ and we have a complete diagonalization on the basis ofP̂ .

These findings are strongly dependent on the assumption that the system of particles
is isolated. It presumes an unrealistic situation since from physical viewpoint it is hard to
exclude external influences, and even under the slight perturbation the time behaviour we
obtained for the reduced matrix elements would not persist. So, even if we intended to present
our findings strictly as a mathematical result, a brief discussion about the persistence of the
present decoherence effect in the case of external perturbations is necessary. We will discuss
this point in comparison with the case of a free non-relativistic particle.

The time dependence in the momentum basis of a non-relativistic free-particle density
matrix element is simply:

ψ(k′)ψ∗(k′′)e−it (k
′2−k′′2)
2mh̄

whereψ(k) is the initial state. Under a time average the expression above, compared with the
diagonal elements, which are constants of motion, becomes:

%
k′k′′

%
1/2
k′k′ %

1/2
k′′k′′
= ψ(k′) ψ∗(k′′)
|ψ(k′)||ψ(k′′)|

1

t

∫ t

0
e−it/τf ree dt

with, denoting asTk the kinetic energy, a ‘decoherence time’τf ree = h̄
|Tk′−Tk′′ | . Since the

integral gives a limited oscillating term the asymptotic behaviour for the correlations of two
different eigenstates of kinetic energy is as the inverse power of time, namely as(t/τf ree)

−1.
Let us now consider a constant perturbation given as a generic function of the energyεf (T ),
which commutes with the free Hamiltonian, and definesTk′′ = Tk′ −1.

Taking the time average requires us to substitute the former integral with the new
expression:

1

t

∫ t

0
dt e−

it
h̄

[1+εf (Tk′ )−εf (Tk′−1)] .

For each value of1 for which the argument of the exponential is zero the integral gives just one.
Then, for eachk′, there are so many values ofk′′ as the zeros of the functionf (Tk′)−f (Tk′ −1)
for which the averaged matrix elements do not go to zero with increasing time. In the case
of decoherence we considered the role of a free particle played by the cm. Adding any
constant perturbationεf (TP ) to the Hamiltonian of our isolated system will not at all disturb
the asymptotic behaviour of any reduced matrix element. In fact, we merely have a change
in their phases, whereas their absolute values are left unchanged. This is a rather artificial
consideration, since the sought disturbance is not very realistic. However, this example may
serve to show that our case of decoherence is persistent under disturbances which only touch
the matrix elements’ phases.
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Coming back to the case of the free non-relativistic particle, we now consider a perturbation
due to a constant force, adding to the free Hamiltonian the termH ′ = xF , which may be written
asxmc/τl . Choosing the acting force as the weight force, the quantityτl is about 3× 107 s.

It is easy to see that the wavefunction of the free-falling particle evolves with time in the
momentum basis as:

ψ(k +mct/τl)e
− i

2mh̄ (k
2t+k mc

τl
t2+m2c2

3τ2
l

t3)

with the same initial condition as before. The above expression means that in addition
to the phase variation with time of each plane wave component, the wavepacket ‘moves’
in momentum space at the rate ofmc/τl s−1. This entails that, for a square integrable
wavefunction,ψ(k +mct/τl) goes, in the long run, to zero for any fixed value ofk and hence
any density matrix element with fixed indices do the same. For a wavepacket with initial
spread1k equal to some fractions ofmc it will occur after a time of the order of years. So we
may disregard this kind of time dependence for the first minutes. Within this approximation
the time average of the normalized density matrix elements gives:

ψ(k′) ψ∗(k′′)
|ψ(k′)||ψ(k′′)|

1

t

∫ t

0
e−

it
2mh̄ (k

′2−k′′2)−i mc(k
′−k′′)

2mh̄τl
t2 dt.

We rewrite the time factor as

1

t

∫ t

0
e
−i( t

τf ree
+ t2

τ2
m
)
dt

whereτf ree = h̄
|Tk′−Tk′′ | was already encountered andτm = |k′+k′′|

mc
(τf reeτl)

1/2. We point out
thatτm is generally greater thanτf ree. The asymptotic expansion gives:

1

t

∫ t

0
e
−i( t

τf ree
+ t2

τ2
m
)
dt ' e−it/τf ree

t

∫ t

0
e
−i t

2

τ2
m dt + · · · .

The first dominating term is easyily written with a couple of Fresnel integralsC(z) andS(z)
wherez = √2/π t/τm:

e−it/τf ree

t

∫ t

0
e
−i t

2

τ2
m dt =

√
2/πe−it/τf ree

t/τm

[
C
(√

2/πt/τm
)
− iS

(√
2/πt/τm

)]
.

For z < 1 the Fresnel integrals are increasing functions of the argument, and both of them go
to the constant value12 in the limit of largez. In conclusion, in the case of a non-relativistic
particle subjected to weight force, we still have decoherence with a 1/t asymptotic behaviour.
The decoherence time, however, is now the greater quantity;τm instead ofτf ree. We also
examined our system of free quasi-relativistic particles, in the case|P ′| 6= |P ′′|, under the
perturbation of the weight force applied to the cm. We again encountered three characteristic
timescales, one of which is the already definedτ . At time t � τ , but shorter than the analogue
of τm and in a worse situation, the off-diagonal density matrix elements differ from zero. We
still have decoherence, but with a greater decoherence time, analogous toτm. However, the
time behaviour for the decays of correlations is now 1/tn−1.

We may conclude that the decoherence mechanism we presented here is as robust or a little
more robust to perturbations than the non-relativistic free-particle case, i.e. not very robust.

For the sake of completeness, we will also consider the case of relativistic particles,
using the so-called ‘relativistic Schrödinger equation’. This equation has been used in various
situations, for example to study the stability of matter constituted of fixed nuclei and electrons
and the collapse of stars of self-gravitating bosons or fermions [20]. It is obtained by replacing
in the usual Schr̈odinger equation the kinetic energy of a particle with its full relativistic



6626 B Carazza

expression. Let us suppose that there is a Lorentz frame such that
√
〈η2
i 〉P � |P/n| for a

setR of values ofP , the average value in question being calculated by means of the above-
mentioned function8(P, η1, η2, . . . , ηn). In these conditions we can use a procedure similar
to the previous one to calculate the time behaviour of the off-diagonal reduced density matrix
elements whose indicesP ′, P ′′ refer to eigenvalues of the total impulse belonging to the setR.
In fact, the kinetic energy

√
m2c4 + (P/n + ηi)2 of each particlei can be developed with good

approximation in powers ofηi retaining the terms up toη3
i . Repeating,mutatis mutanda, the

previous steps we once again find that the off-diagonal elements of the reduced density matrix
compared with the diagonal ones decrease asymptotically with time, as follows:

|ρ
P ′P ′′ |/(|ρP ′P ′ ||ρP ′′P ′′ |)1/2 6 2C|t/τr |−(n−1)/2.

The constantC is

[
∑′

i1i2...in
|8(P ′, γi1, γi2, . . .)||8∗(P ′′, γi1, γi2, . . .)|]/p

(|8(P ′, v′1, v′2 . . .)||8(P ′′, v′′1, v′′2 . . .)|)1/2
denoting asγ1, γ2 the two new stationary points. The decoherence time is now

τr = πh̄E′3E′′3

nM4c8|E′′ − E′′|(E′′2 +E′E′′ +E′′2)

whereE2 = M2c4 + P 2c2. ForE′ ∼ E′′ ∼ 10Mc2, |E′ − E′′| ∼ 1 eV and considering
about ten particles, we obtainτr ∼ 10−13 s. All of this applies, we remind, if both|P ′| and
|P ′′| belong toR. As before, the result is that the reduced matrix diagonalizes on the basis of
P̂ 2. But here too our expression for the asymptotic behaviour is not valid if|P ′| = |P ′′|. In
that case we have a double stationary point, the evaluation of the off-diagonal reduced matrix
elements has to be worked out separately with the result that asymptotically|ρ

P ′P ′′ | depends
on time as|t |−(n−1)/3.

4. Concluding remarks

Using non-relativistic quantum mechanics, and within a reference frame in which the system
is on average at rest (i.e. its average total momentum is zero), we have shown that a one-
dimensional system of a sufficient number of free quasi-relativistic particles, even if isolated,
may decohere on the basis of the total momentum if we consider correction to kinetic energy
to terms of second order in 1/c. In other words, we have established, under the conditions
stated above, a superselection rule for the total momentum. For the sake of completeness, we
obtained similar results using the full relativistic expression for the kinetic operator for those
Lorentz frames in which the relative momenta are much smaller thanP/n, whereP is the total
momentum. The decoherence we are talking about was obtained by tracing upon the relative
momenta. Our choice of that coarse-graining seems natural if we wish to look at the system
as a whole. The higher the number of particles, the faster the decoherence, meaning that it
becomes more effective in the macroscopic limit. What we found in the case of relativistic
corrections within a non-relativistic quantum mechanics framework may reasonably suggest
that isolated systems of charged or gravitational interacting particles, for which the approximate
Hamiltonian we mentioned is adopted, present decoherence on the basis of total momentum if
we look at the system as a whole and ignore the internal degrees of freedom. Systems of this sort
might include atoms with many electrons, for instance. True, the Hamiltonian in question is not
only approximated but also ignores spin, so it may be considered ‘semi-classic’. The presumed
effect is interesting anyway. If the number of particles is very big, such that the system may be
considered macroscopic, it cannot be supposed to be isolated, due to the extraordinary density
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of its energy levels and to the action of surrounding objects, even if this tends towards zero.
Also we learned that our decoherence mechanism is not very robust to perturbations, other
non-relativistic interaction terms would cause a more effective and different phenomenological
decoherence of the cm variables. The action of the external environment will certainly prevail,
so that the reduced density matrix for the collective variable of our system will diagonalize
on the basis of the position, as shown in many examples [11]. But a mesoscopic object, with
a very small number of components, may probably be considered isolated, if only for a short
period of time. In which case we get the following situation: macroscopic bodies appear in
a localized state, while particles made up of a small number of components would appear in
well-defined states of the total momentum. Further, while not being realistic, the model we
have discussed for fully relativistic particles can be applied to the case of multiple production in
the two bodies collision at high energy. As it is well known, the secondary particles produced
in these experiments have a transverse momentumpt , which is negligible compared with the
momentum parallel to the collision axis (pl), and in fact, one-dimensional variables have been
introduced already to describe the process [21]. A very popular phenomenological model
considers the secondaries in the final state as non-interacting particles grouped in clusters
having a classical statistical distribution in the longitudinal momentum or rapidity [22]. Let
us think of a cluster in terms of our model (adapted for the purpose) and consider the relative
momenta of the secondaries emitted from it to have values∼pt , which is much less (outside
the central zone) than the total momentum of the system. Then we must conclude that the
reduced density matrix of clusters rapidly diagonalizes on the basis of their total momentum.
This therefore justifies their description in terms of classical statistical distribution.
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