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Abstract. This paper looks at the possibility of a system of free particles presenting decoherence
in the total momentum when tracing upon their relative momenta if we take into account a relativistic
correction to the expression of the kinetic energy.

1. Introduction

Decoherence—the phenomenon whereby a quantum system initially in a pure state evolves into
a improper mixture due to interaction with its environment [1]—has been studied extensively,
using both toy models [2] and more complex models representing real physical situations [3].
Sources of decoherence such as scattering [4, 5] and quantum gravity [6, 7] and both internal
[8, 9] and external [10, 11] environments are taken into consideration. Omnes [12] recently
presented a general theory of the effect of decoherence that includes both the harmonic model
of Caldeira—Leggett [10] and the external environment considered by Joos and Zeh [11] and
is related to the quantum state [13] diffusion model.

Decoherence is especially interesting as it promises to solve the old problem of how to
derive the classical behaviour of macroscopic bodies from quantum principles. In fact, in the
case of a macroscopic body, decoherence is believed to suppress the off-diagonal elements of
the spatially reduced matrix of the centre of mass (cm), irrespective of initial conditions. This
is equivalent to establishing a superselection rule for the position of macroscopic bodies and
to saying that we cannot experience spatial macrosuperpositions. We can thus explain why we
do not encounter states of this kind when looking at everyday objects. To derive such a result it
is not necessary to consider an external environment. In fact, a system of many patrticles like a
macroscopic body may be considered as consisting formally of a ‘collective system’ described
by the collective coordinates, and the system described by its microscopic coordinates, which
can act as an (internal) environment if the two formal systems are coupled. This coupling may
be either guaranteed by some constraints or caused by an external potential. Of course in the
case ofanisolated macroscopic body, where the Hamiltonian consists of the sum of two separate
Hamiltonians relative to the cm and internal variables respectively, there is no coupling between
them and so decoherence of the collective variable is not possible. However, we wish to signal
a possible case of decoherence, with the suppression of correlations in the total momentum,
for a system of particles even if isolated, provided that we consider relativistic corrections to
the non-relativistic Hamiltonian. It should be pointed out that decoherence of isolated systems
has been discussed before in various contexts: Halliwell [8] investigated the variables that
will generally become effectively classical as the local densities (of the number of particles,
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momentum and energy), and Calzetta and Hu [14] investigated the decoherence of histories
of certain correlation functions in a field theory. We should also mention that diagonalization
in the square of momentum basis has been argued for a system of (nhon-relativistic) particles
interacting with the linearized gravitational field [15].

It is already known that in classical electrodynamics a system of interacting particles
may be approximately described to terms of second ordetdiy a Hamiltonian depending
only on their positions and velocities, since the radiation appears only as an effect of order
1/c%. The same may be said for particles subject to gravitational interaction [16]. In this
approximation the total momentum of the system is no longer independent, but is coupled to
the internal degrees of freedom. So, if we adopt the above-mentioned Hamiltonian (after due
symmetrization) as the Hamiltonian operator within non-relativistic quantum mechanics, we
may expect to have decoherence for the collective variable tracing over the microscopic ones.
This may occur even if the particles are not interacting, thanks to the relativistic correction
to their kinetic energy. The coupling we are discussing commutes with the non-relativistic
free Hamiltonian of the cm. As we learned from studies of wide-open quantum systems [17],
the diagonalization is to be expected in the basis of any dynamical operator commuting with
the coupling terms and so our candidate for a preferred basis is that of total momentum.
The importance of an interaction commuting with the preferred basis was already stressed by
Zurek [18].

Since the aim of this paper is merely to briefly signal such a possibility, we will consider
for the sake of simplicity a system efree spinless particles of equal masi one dimension,
aone-dimensional ideal gas in fact. We stress that we intend to work within the non-relativistic
quantum mechanics and consider the correction to the kinetic energy and its consequences as
a relativistic effect.

The model is certainly not realistic but we intend to offer the result as a further case of
decoherence with not usual features. Not usual because the system is isolated and also because
in our case the reduced statistical operator diagonalizes on the basis of the total momentum,
which thus acquires the status of preferred basis. We believe all this is interesting in itself.
We do wish to stress that the calculations will be carried out without recourse to any master
equation but by following the Sctdinger evolution of a pure state. With the kinetic operator
used, the Galilean invariance is destroyed, so we have to specify the reference frame we are
referring to. A Galilean transformation corresponds to a translation of momenta. For the
approximation we are using to make any sense, the reference frames to take into consideration
are obviously the ones (if they exist) for which the absolute value of momentum for each
particle is not significantly likely to be of the order of, or greater than, This requisite can
be expressed by applying the conditigif) < m?2c? for everyi. It will certainly be satisfied
if the more restrictive conditio} /_, (p?) <« m3c? is also satisfied. To establish a definite
reference frame, we will adopt the one in which, for a given wavefunction, the last mentioned
expression gives the lowest value. It will be the reference frame in which the mean value of the
total momentum is zero. Even by selecting the optimal reference frame, however, the validity
of our approximation is not automatically guaranteed and our result will be only significant if
the condition on the values (()ﬁ,?) is satisfied.
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2. The system of free particles in one dimension with relativistic correction to the
kinetic energy

The free Hamiltonian which we will consider for quasi-relativistic particles is
—~ 2m  ~ 8m3c?
1= 1=

Using the momentum basis and wiglp1, p, ..., p,) indicating the initial state, we have the
state at time as follows:

s (P
Ix (1)) = e Mia@ =522 g (py, po, ..., pa).

We now change the variablep; = P/n +n;, whereP is the total momentum. Theg are not
independent, since they must satisfy the relaligh , n; = 0. We will consider as independent
variablesP together with the firsk — 1 relative momenta. The last relative momentum is
expressed ag, = — Z;’;ll n;. The Jacobian determinant of the transformation is equal to
1. We will write the integration volume element for the new variables ®s=d dP dS,
where & = dn1dn,...dn,_1. Using the new variables and taking into account the relation
>'_; m; = 0 the above expression now becomes:

g _

_ip P2 _ P4y 32 o2 _p 3
|x (1)) = € l2m &332 ROBRNC il w Rl vl Eanl wow AU )](D(p, My - )

where® (P, n1, n2, ..., n,) indicatesp(P/n+n1, P/n+n2, ..., P/n+n,) Note that here and
in the various expressions that follayy stands foe= — Zf”l n;. The projection P’| x (¢)) of

the state vector at timeon an eigenstatgP’) of the total momentum is

pr2 P4 w1 32 2 P 3
PP PP g (o M 8P 2 Pl
e (o —samz timi(n bz~ a2mB2 i~ 732 )] O(P' 01y ... ).

By tracing{x (t)| P"){P'| x (¢)) upon the relative momenta, i.e. integrating ovyde get the
reduced density matrix element on the total momentum basis:

[Py (o
Oprpn = et zm " ewdZ pipn.

The factorlp p» indicates the integral
frpr = f (P, 13, M2y -y 1) DH (P, 10, 2, -, )€ D @400 i

wherew = 3(P’? — P"?)/(4hn’m3c?) andz = (P’ — P")/(2hnm3c?). The diagonal matrix
elements are constant of motion, but whehs P” the integral in the previous expression
may cancel out with time, in which case the off-diagonal elements are cancelled out, meaning
that we have decoherence.

3. Evaluation of the reduced density matrix elements

In order to understand the time behaviour of the matrix elements we are interested in it is thus
necessary to evaluate the integialp-. To take into account the constraipt = — Z?;ll n;

we multiply the integrand by the delta functié)_"_, n;) using its Fourier representation
(1/2r) [ € Xi=kn dk and also considey, as a independent integration variable. Writing

G(P',P";n1,....00) = (P’ 1, m2, ..., 0) P (P, 1, 2, .., M)
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andh(n;) = wn? + zn? our integral becomes

Ippr = (1/2”)/ dk/eik”1+i’h('71) dnl/eik”f'i’h("” dn

“/eiknﬁizh(nn) Ay GCP'. P 0. o ).

Let us start with the integration ofy. We are interested in the behaviour of the off-diagonal
matrix elements at large time, so we shall use asymptotic expansion methods to evaluate
the result. More precisely, we will look at the method of stationary phase [19]. According
to this, wherr is a large quantity, the major contribution to the value of the integral arises
from the immediate vicinity of the endpoints and from the vicinity of those points at which
h(n,) is stationary, i.e. the first derivativé(s,) is equal to zero. In the first approximation the
contribution of stationary points is more important. If we suppose that the function representing
the intial state is square integrable and thus going to zero at infinity, we can disregard the
endpoint contributions at all. Since only the neighbourhood matters, asymptotic evaluation
consists of replacing(n,) near any stationary poinf: ash(n¥) + (5 )h”(nn)(nn — 52 By

the same argument, the factor §f@" in the integrand, assuming |t is a continuous function,

is replaced by its value at' and the integration is safely extended fremo to +oo. We

will replace G(P’, P"; n1, ..., n,) by G(P’, P”; n1, ..., i), but maintain the dependence

on n, of € since it belongs to the Fourier representation of the delta function, a non-
continuous and singular function indeed. We have two stationary poinjs a 0 and

n, = —2w/(3z) = — (P’ + P")/2. These two values are indicatedogsanday, respectively.

The corresponding values of the second derivativehéte;) = 2w andh”(az) = —2w.

Using the procedure illustrated above, we obtain:

G(P/, P//; N, 02s e al)[ZiJT/l‘h”(Olj_)] l/2eilh(ot1)+ika17ik2/(2th”(a1))
+G(P', P"; 11, 2, - . ., a2)[2i7 ) th (aip)] Y2 he2) ko —ik?/ il (@2))

Integrating now omy,,_; the two terms of the above expression we obtain the sum of four terms,
which are again doubled after the next integration and so on. Lastly, the asymptotic expression
of Ipp» becomes

2ir Ith(ai-)"'i[kai *ﬁ]
_/dk Z G(P P// Qs iy v 051,;)1_[ th”(Olz J / o -

i1,i2,.

In the multiple sum, each af, i», ..., i, assumes the value 1 or 2, corresponding to the two
values of the stationary points for each relative momentum. Finally, performing the integration
onk, we obtain:

i/(2;=1“if)2
/ zz';:l 1//x/’(u,<],) n elth(aif)

(2_”> Y. G Pliai.a e e ——
’ ’ 11 129 * > In T
t i1,i,...,in |Z};:l l/l’l”(ot,-j) j=1 _Ih”(c{i/‘)

whereY"" means that the terms for whicE’}:1 1/h"(a;;) = O are excluded. Such terms

(n—1)

indeed give zero after the integration bnAfter substitution of_ /i Z’}zl 1/h"(a;;)| with the
lower possible valug/[1/(2w)|, we have asymptotically

(n—1)/2 ’
2w~V N |G(P, P iy e,

1,020

2

10pipn | < | —
Pprpnl & ¢
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For the primed sum we may also write;

/ /
Y G P, .. )| < 2"[ SR iy [ PF (P ety ain)|i|/p
i102...0p, i1i2...0p,
wherep is the number of terms which contribute with the non-zero value to the sum. We used
the definition ofG(P’, P”; n1, n2, . . ., ,) already given and the fact thatis equal to or less
than the 2 possible combinations of the indicgs

At this point we will compare the off-diagonal matrix elements with the diagonal ones.
Since the last are constant of motion, we do not expect it to change the result, but to obtain a
dimensionless expression. To this end we need to establish a further bound. Looking at the
definition of the reduced matrix elements we may state that

|ppp| = IPP = /q)(Pa nla "-7nn)®*(Pa n15 "'7nll)dS

is evidently greater than or equal to the result of the integration over a finite volume as the
integrand is a positive quantity. LetMc¢ < n; < Mc be a finite integration interval for each
variable. Recalling that only — 1 of them are independent, as= — Z?j nj:

10| = @MY (P, ur, uz.. )P

whereus, u; . .. denotes an internal point of the hypercube chosen as the integration domain.
We recall that the function® (P, us, u,...)| is assumed as bounded everywhere. Now
comparing the off-diagonal elements to the diagonal ones we will consider (to be democratic)
the ratio of|p,,,,| to (|p,.,.11p,.,,N*/2. Using the inequalities already found:

10050 /10011110, D2 < 2412 ) 70702,
The constanfA denotes the quantity:

[2 :: i |d)(} /a gy veny ai,,)“q:(l ”»aila cey Oli,,)”/p
112...lp
| PP, uy, uy. . )PP, uf,uy...)|

andr = 3“,4,’2’—% is a characteristic timescale of the process such that wisen the absolute

values of the off-diagonal elements are vanishing. It should be pointed out that we actually have
decoherence in the basis of (non-relativistic) kinetic engfgy % of the cm. Introducing

E as a more appropriate variable the decoherence time is better writte&aﬁ/%. It

is inversely proportional to the differen¢€’ — E”| and also decreases with increasing total
massM, as one may expect intuitively. Witlk” — E”| of the order of a few eV and with, say,

ten particles, the characteristic time is very small, aboat4s.

As we anticipated and contrary to our initial prediction, the result we have just found
shows that the reduced density matrix diagonalizes on the bagié arfid not on that of total
momentumP. That is, they are the matrix elements for whiéHt| # |P”|, which we found
go to zero as time increases. But our expression for the asymptotic behaviour is not valid
if P" = —P”. In such a case, in fact, the functiarin) depends only o3, we have only
a stationary point of the second order and the asymptotic evaluation of our integral has to
be worked out separately. To this end, the integration interva] is split into (0, co) and
(—o0, 0) and each of the two integrals is integrated by parts a number of times, differentiating
G(P', P";n1,n2, ..., n,) and integrating the remaining factor of the integrand. Taking only
the dominant term into account, asymptotically we have:

f_ LBl

o0

10,13 1/ 10, 110, DY < B |t /7|77 D/3




6624 B Carazza

The constanB is:
|®(P’,0,0,0,...,0)| |®(P",0,0,0,0,...,0)]
|D(P’, uy, uy. . Y|PP", uf,uy...)

3 . .
andt’ = #—EP%' For values of P’ — P”| of a few eV/c and always assuming~ 10, still

v’ ~ 1071 s. The function Aig) indicates the Airy functiort [, cosBy + y/3) dy. We
assumed time to be positive aRd > P”. The asymptotic estimate of the other half of the off-
diagonal matrix elements for which’ < P” is immediately obtained sindg,,,. | = |p,,. |
by hermiticity. Ai(8) for large and positive values ¢f tends exponentially to zero. It is
also going to zero fog which tends towards-oo, but now the behaviour is likgg| =Y.
However, for a sufficient number of particles (five or more)(#i” is integrable. Summing
UP 10, | /UL s 110 e Y2, ifthe number of particles is as indicated, also tends asymptotically
to zero whenP’ = — P” and we have a complete diagonalization on the basi. of

These findings are strongly dependent on the assumption that the system of particles
is isolated. It presumes an unrealistic situation since from physical viewpoint it is hard to
exclude external influences, and even under the slight perturbation the time behaviour we
obtained for the reduced matrix elements would not persist. So, even if we intended to present
our findings strictly as a mathematical result, a brief discussion about the persistence of the
present decoherence effect in the case of external perturbations is necessary. We will discuss
this point in comparison with the case of a free non-relativistic particle.

The time dependence in the momentum basis of a non-relativistic free-particle density
matrix element is simply:

W2_12)

VKPR
whereyr (k) is the initial state. Under a time average the expression above, compared with the
diagonal elements, which are constants of motion, becomes:

O Y)Yk 1 / it
0

0202 T WUy (k)] ¢

with, denoting asl; the kinetic energy, a ‘decoherence timg,., = mf—rkl Since the
integral gives a limited oscillating term the asymptotic behaviour for the correlations of two
different eigenstates of kinetic energy is as the inverse power of time, namelyras.) .
Let us now consider a constant perturbation given as a generic function of the efiéfgy
which commutes with the free Hamiltonian, and defifies= T, — A.

Taking the time average requires us to substitute the former integral with the new
expression:

t .
: / dr e ilAreS Tin=ef (T =8)],
tJo

For each value oA for which the argument of the exponential is zero the integral gives just one.
Then, for eacl’, there are so many valuesidfas the zeros of the functiof( Ty ) — f (Ty — A)

for which the averaged matrix elements do not go to zero with increasing time. In the case
of decoherence we considered the role of a free particle played by the cm. Adding any
constant perturbatios)f (Tp) to the Hamiltonian of our isolated system will not at all disturb

the asymptotic behaviour of any reduced matrix element. In fact, we merely have a change
in their phases, whereas their absolute values are left unchanged. This is a rather artificial
consideration, since the sought disturbance is not very realistic. However, this example may
serve to show that our case of decoherence is persistent under disturbances which only touch
the matrix elements’ phases.



On the possibility of decoherence due to a relativistic effect 6625

Coming back to the case of the free non-relativistic particle, we now consider a perturbation
due to a constant force, adding to the free Hamiltonian the Eérea x F, which may be written
asxmc/7;. Choosing the acting force as the weight force, the quantityabout 3x 107 s.

It is easy to see that the wavefunction of the free-falling particle evolves with time in the
momentum basis as:

Uk + metjrye PTEREAED

with the same initial condition as before. The above expression means that in addition
to the phase variation with time of each plane wave component, the wavepacket ‘moves’
in momentum space at the rate mt/r; s1. This entails that, for a square integrable
wavefunctiony (k + mct /7;) goes, in the long run, to zero for any fixed valuecand hence

any density matrix element with fixed indices do the same. For a wavepacket with initial
spreadAk equal to some fractions efc it will occur after a time of the order of years. So we
may disregard this kind of time dependence for the first minutes. Within this approximation
the time average of the normalized density matrix elements gives:

1/f(7<’) l//*(k”) 1_/1 efﬁ(k,sz”z)*i'7'(5;5%;],(,,)’2 dt
[y DY K]t Jo
We rewrite the time factor as

to 2
1‘/ e l(ffm+f,%)d[
tJo

wheret,,, = rﬁm was already encountered angl = £ (/. 7)Y/2. We point out

thatr,, is generally greater thary,... The asymptotic expansion gives:

1 ! it 42 e—it/rf“,e t 2
—/ e TR dr ~ / e Adi+-..
0 t 0

t
The first dominating term is easyily written with a couple of Fresnel integréts and S(z)

wherez = /2/7 t /7,

t t/Tm
Forz < 1 the Fresnel integrals are increasing functions of the argument, and both of them go
to the constant valué in the limit of largez. In conclusion, in the case of a non-relativistic
particle subjected to weight force, we still have decoherence with asymptotic behaviour.
The decoherence time, however, is now the greater quanjjtynstead ofrs,... We also
examined our system of free quasi-relativistic particles, in the gage£ |P”|, under the
perturbation of the weight force applied to the cm. We again encountered three characteristic
timescales, one of which is the already defimedt timer > t, but shorter than the analogue
of 7,, and in a worse situation, the off-diagonal density matrix elements differ from zero. We
still have decoherence, but with a greater decoherence time, analoggus towever, the
time behaviour for the decays of correlations is ngw/'1.

We may conclude that the decoherence mechanism we presented here is as robust or a little
more robust to perturbations than the non-relativistic free-particle case, i.e. not very robust.

For the sake of completeness, we will also consider the case of relativistic particles,
using the so-called ‘relativistic Sabalinger equation’. This equation has been used in various
situations, for example to study the stability of matter constituted of fixed nuclei and electrons
and the collapse of stars of self-gravitating bosons or fermions [20]. Itis obtained by replacing
in the usual Sclirdinger equation the kinetic energy of a particle with its full relativistic
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expression. Let us suppose that there is a Lorentz frame sucky(h%;t,, < |P/n| for a

setR of values ofP, the average value in question being calculated by means of the above-
mentioned functiorb (P, 11, 12, ..., n,). In these conditions we can use a procedure similar

to the previous one to calculate the time behaviour of the off-diagonal reduced density matrix
elements whose indicg¥, P” refer to eigenvalues of the total impulse belonging to thekset

In fact, the kinetic energy/m2c4 + (P /n + ;)2 of each particlé can be developed with good
approximation in powers of; retaining the terms up tg®. Repeatingmutatis mutandathe
previous steps we once again find that the off-diagonal elements of the reduced density matrix
compared with the diagonal ones decrease asymptotically with time, as follows:

10050 1/ 10 11010 D2 < 2C 2 /7, 7712,
The constanc is
[Z;1i2~~in |(I)(P/, Yiis Vi - - )||(D*(P//’ Yiis Vi« - )|]/p
(IP(P’, vy, vy . )| P(P”, V], V5 .. Jhl2
denoting ag/, y» the two new stationary points. The decoherence time is now
B ]TEE/SE//?»
- nM4C8|E// _ E//|(E//2 + E'E" + E//2)
where E? = M?c* + P?c?. ForE' ~ E” ~ 10Mc?, |E' — E"| ~ 1 eV and considering
about ten particles, we obtain ~ 102 s. All of this applies, we remind, if bothP’| and
|P"| belong toR. As before, the result is that the reduced matrix diagonalizes on the basis of
P2. But here too our expression for the asymptotic behaviour is not vali®l if= |P”|. In
that case we have a double stationary point, the evaluation of the off-diagonal reduced matrix

elements has to be worked out separately with the result that asymptofjgally depends
on time ag¢|~"—D/3,

4. Concluding remarks

Using non-relativistic quantum mechanics, and within a reference frame in which the system
is on average at rest (i.e. its average total momentum is zero), we have shown that a one-
dimensional system of a sufficient number of free quasi-relativistic particles, even if isolated,
may decohere on the basis of the total momentum if we consider correction to kinetic energy
to terms of second order iryd In other words, we have established, under the conditions
stated above, a superselection rule for the total momentum. For the sake of completeness, we
obtained similar results using the full relativistic expression for the kinetic operator for those
Lorentz frames in which the relative momenta are much smaller®hanwhereP is the total
momentum. The decoherence we are talking about was obtained by tracing upon the relative
momenta. Our choice of that coarse-graining seems natural if we wish to look at the system
as a whole. The higher the number of particles, the faster the decoherence, meaning that it
becomes more effective in the macroscopic limit. What we found in the case of relativistic
corrections within a non-relativistic quantum mechanics framework may reasonably suggest
thatisolated systems of charged or gravitational interacting particles, for which the approximate
Hamiltonian we mentioned is adopted, present decoherence on the basis of total momentum if
we look at the system as a whole and ignore the internal degrees of freedom. Systems of this sort
mightinclude atoms with many electrons, forinstance. True, the Hamiltonian in question is not
only approximated but also ignores spin, so it may be considered ‘semi-classic’. The presumed
effect is interesting anyway. If the number of particles is very big, such that the system may be
considered macroscopic, it cannot be supposed to be isolated, due to the extraordinary density
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of its energy levels and to the action of surrounding objects, even if this tends towards zero.
Also we learned that our decoherence mechanism is not very robust to perturbations, other
non-relativistic interaction terms would cause a more effective and different phenomenological
decoherence of the cm variables. The action of the external environment will certainly prevail,
so that the reduced density matrix for the collective variable of our system will diagonalize
on the basis of the position, as shown in many examples [11]. But a mesoscopic object, with
a very small number of components, may probably be considered isolated, if only for a short
period of time. In which case we get the following situation: macroscopic bodies appear in
a localized state, while particles made up of a small number of components would appear in
well-defined states of the total momentum. Further, while not being realistic, the model we
have discussed for fully relativistic particles can be applied to the case of multiple production in
the two bodies collision at high energy. As it is well known, the secondary particles produced
in these experiments have a transverse momemptynvhich is negligible compared with the
momentum parallel to the collision axig;§, and in fact, one-dimensional variables have been
introduced already to describe the process [21]. A very popular phenomenological model
considers the secondaries in the final state as non-interacting particles grouped in clusters
having a classical statistical distribution in the longitudinal momentum or rapidity [22]. Let
us think of a cluster in terms of our model (adapted for the purpose) and consider the relative
momenta of the secondaries emitted from it to have vatugs which is much less (outside

the central zone) than the total momentum of the system. Then we must conclude that the
reduced density matrix of clusters rapidly diagonalizes on the basis of their total momentum.
This therefore justifies their description in terms of classical statistical distribution.
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